
Dynamic Mode Decomposition and Some Variants

by

Linkai Ma

New York University

September, 2022

Professor Jonathan Weare

Contents

1 Introduction 2

2 Background 3

2.1 Dynamical System and Data . 3

2.2 Standard DMD . 4

3 Randomized DMD for High Dimensional Data 8

3.1 Motivation . 8

3.2 Randomized DMD . 9

3.3 Numerical Experiments . 10

3.3.1 Fluid Flow Behind a Cylinder . 11

3.3.2 Sea Surface Temperature Data . 12

4 DMD for Streaming Data 15

4.1 Motivation . 15

4.2 DMD with single update . 15

4.3 DMD with block update . 19

4.4 Numerical Experiments . 21

4.4.1 DMD with single update . 21

4.4.2 DMD with block update . 21

ii

A Appendix 26

A.1 Python Code . 26

Bibliography 30

1

1 | Introduction

Since its birth from the fluid dynamics community[Schimid 2010; Rowley et al. 2009], dynamic

mode decomposition (DMD) has gained an increasing popularity among computational science

and engineering. DMD is an equation-freemethod for detecting linear trends fromobserved snap-

shot data of a dynamical system. It constructs low-dimensional modes from high-dimensional

time series data. Compared to other model order reduction methods, such as Proper Orthogonal

Decomposition (POD)[Berkooz et al. 1993], DMD couples the spatial dimension reduction modes

with different time frequencies, enabling the dynamic modes to capture more complex behav-

iors of the system. Although the theory of DMD is far from complete, we have seen successful

applications in many different fields, such as, atmospheric science, video analysis, neuroscience,

finance, epidemiology, etc.

One interesting variant of DMD is the multiresolution DMD (mrDMD) [Kutz et al. 2016]. The

mrDMD separates the slow and fast DMD modes and apply DMD recursively. It is capable of

separating background and foreground data and was found to be extremely successful in video

analysis. DMD is also related to the Koopman operator [Koopman 1931], which is a linear oper-

ator that acts on nonlinear observables in an infinitedimensional Hilbert space. The existence of

this linear operator gives us hope to linearize complicated dynamics on the space of observables.

Rowely et al were able to connect DMD with the Koopman operator in [Rowley et al. 2009].

Another example is the extended DMD method[Williams et al. 2016], which approximates the

Koopman operator from a dictionary of function basis.

2

2 | Background

2.1 Dynamical System and Data

In the DMD literature, we assume that our data is generated from a dynamical system

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥 ; 𝑡 ;𝜃)

where 𝑥 (𝑡) ∈ R𝑛 is the state of our dynamical system at time 𝑡 and 𝜃 is the parameter of our

model.

The standard DMD aims to model our system with the simplest dynamical system:

𝑑𝑥

𝑑𝑡
= Λ

where Λ is a constant matrix.

Under this assumption, the solution of our dynamical system is:

𝑥 (𝑡) = 𝑒𝑡Λ𝑥 (0)

If we discretize our system with time step Δ𝑡 , we should have

∀𝑘, 𝑥𝑘+1 = 𝑒Δ𝑡Λ𝑥𝑘

3

If we denote 𝐴 = 𝑒Δ𝑡Λ, we have:

𝑥𝑘+1 = 𝐴𝑥𝑘

Suppose we collect𝑚 + 1 snapshot data, and label the data as:

𝑋𝐿 =


𝑥0 𝑥1 . . . 𝑥𝑚−1


𝑋𝑅 =


𝑥1 𝑥2 . . . 𝑥𝑚


Our model aims to find some constant matrix 𝐴 such that 𝑋𝑅 ≈ 𝐴𝑋𝐿 .

2.2 Standard DMD

Dynamic Mode Decomposition (DMD) finds a best matrix𝐴 for the approximation 𝑋𝑅 ≈ 𝐴𝑋𝐿

in the Frobenius sense.

𝐴 = argmin
Π

| |𝑋𝑅 − Π𝑋𝐿 | |2𝐹

The solution to this optimization problem is not necessarily unique. One solution is𝐴 = 𝑋
𝑅
𝑋

†
𝐿
,

where † is the Moore–Penrose inverse. We can compute this solution explicitly by using the SVD

of 𝑋𝐿 . Say 𝑋𝐿 = 𝑈 Σ𝑉 ∗, then 𝐴 = 𝑋𝑅𝑉 Σ
†𝑈 ∗.

In the DMD literature, the derivation of 𝐴 is oftentimes omitted. We present below the proof

of a slightly more generalized result.

Lemma 1

For 𝐶 ∈ C𝑛×𝑚, 𝐵 ∈ C𝑘×𝑚, argmin
𝐴∈C𝑛×𝑘

| |𝐶 −𝐴𝐵 | |2𝐹 = 𝐶𝐵†

4

Proof. Let’s look at this problem from a ’row view’.

©­­­­­­­­­­­«

𝑐1

𝑐2

...

𝑐𝑛

ª®®®®®®®®®®®¬
≈ 𝐴

©­­­­­­­­­­­«

𝑏1

𝑏2

...

𝑏𝑘

ª®®®®®®®®®®®¬
=

©­­­­­­­­­­­«

𝑎1𝐵

𝑎2𝐵

...

𝑎𝑛𝐵

ª®®®®®®®®®®®¬
where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 ’s are rows of 𝐴, 𝐵 and 𝐶 .

To minimize the Frobenius norm of the difference, we need to approximate the rows of 𝐶 by

linear combinations of rows of 𝐵. Since we can choose the linear combination, i.e. the rows of 𝐴

independently, we just need to minimize the error for each row independently.

The above can be done in two steps.

Step 1: project 𝑐𝑖 on to the row space of 𝐵. Step 2: express the result as a linear combination

of 𝑏𝑖 ’s.

Denote 𝑟 = rank(𝐵). Let’s denote the reduced rank-r SVD of 𝐵 as 𝐵 = 𝑈 Σ𝑉 ∗.

For step 1, we can use the projector constructed from the SVD: 𝑐𝑖𝑉𝑉 ∗ gives the desired result.

For step 2, we make the following observation:

𝑈 Σ𝑉 ∗ = 𝐵

𝑉 ∗ = Σ−1𝑈 ∗𝐵

𝑐𝑖𝑉𝑉
∗ = 𝑐𝑖𝑉 Σ

−1𝑈 ∗𝐵

5

i.e.

𝑐𝑖𝑉𝑉
∗ = 𝑐𝑖𝑉 Σ

−1𝑈 ∗

©­­­­­­­­­­­«

𝑏1

𝑏2

...

𝑏𝑘

ª®®®®®®®®®®®¬
Therefore, the coordinates we are looking for is 𝑎𝑖 = 𝑐𝑖𝑉 Σ−1𝑈 ∗

Putting this together as a matrix, we have: 𝐴 = 𝐶𝑉 Σ−1𝑈 ∗ = 𝐶𝐵† □

We then define𝐴 as the projection of𝐴 onto the dominant component of column space of 𝑋𝐿

and find the eigenvectors𝑊 of𝐴. We define the projected dynamic modes as the eigenvectors𝑊

reconstructed back to the column space of 𝑋𝐿 .

Algorithm 1 Standard DMD

input: (𝑛 ×𝑚) snapshot data matrices 𝑋𝐿, 𝑋𝑅 ; rank of DMD 𝑟

output: projected dynamic modes Φ of the data and the corresponding eigenvalues 𝐸

1. Compute reduced rank-r SVD of 𝑋𝐿 ≈ 𝑈 Σ𝑉 ∗

2. Define 𝐴 as the projection of 𝐴 onto the column space of𝑈

𝐴 = 𝑈 ∗𝐴𝑈 = 𝑈 ∗𝑋𝑅 (𝑋𝐿)†𝑈 = 𝑈 ∗𝑋𝑅𝑉 Σ
−1𝑈 ∗𝑈 = 𝑈 ∗𝑋𝑅𝑉 Σ

−1

3. Compute eigenvectors and eigenvalues of 𝐴

𝐴𝑊 =𝑊𝐸

6

4. Compute the projected dynamic modes

Φ = 𝑈𝑊

5. Return (Φ, 𝐸)

Note that Φ is the eigenvectors of 𝐴 projected back to the column space of U. It is not the

exact eigenvector of 𝐴. The exact eigenvectors are 𝑋𝑅𝑉 Σ−1𝑊 . If we denote P𝐿 as the orthogonal

projection on the column space of 𝑋𝐿 , then for nonzero eigenvalues, Φ is the eigenvectors of P𝐿𝐴

and Φ = P𝐿𝐸
−1𝑋𝑅𝑉 Σ−1𝑊 . For details of the discussion between the projected eigenvectors and

exact vectors, see theorem 2 and 3 in [Tu et al. 2014].

We can use the dynamic modes to reconstruct the data. Let 𝑏 = Φ†𝑥0, i.e. the projection of 𝑥0

onto the projected dynamic modes in the least square sense. Then our data could be constructed

by:

𝑥𝑘 =

𝑟∑︁
𝑖=1

𝜙𝑖𝑒
𝑘
𝑖 𝑏𝑖 = Φ𝐸𝑘𝑏

where 𝜙𝑖 is the i-th column of Φ, and 𝑒𝑖 is the corresponding eigenvalue.

7

3 | Randomized DMD for High

Dimensional Data

3.1 Motivation

The standard DMD algorithm is capable of capturing nonlinear trend from data without

knowledge of the underlying equation. It has become a powerful data-driven tool for analyzing

high-dimensional time series data and is gaining a growing popularity among the data science

community. However, there is an unavoidable large computational cost when applying DMD to

high dimensional data. For applications in fluids and climate data, the dimension is often the

number of grid points of the discretization scheme.

If we assume the dimension of our data to be 𝑛 and the number of time steps to be 𝑚, in

the first step of the DMD algorithm, taking the SVD of 𝑋𝐿 costs 𝑂 (𝑛2𝑚), which becomes ex-

tremely expensive when 𝑛 is large. For real world applications of the DMD, there’s always a

low-dimensional structure for the data. Hence we hope to find a computational efficient way to

compute DMD based on the intrinsic low-rank structure of the data. Brunton, Erichson, Kutz and

Mathelin[Erichson et al. 2019] proposed a randomized DMD method based on the randomized

numerical linear algebra frame work by Halko, Martinsson, and Tropp[Halko et al. 2011]. We de-

velop a similar randomized DMD method with faster convergence using the Randomized Block

Krylov Method in[Musco and Musco 2015].

8

3.2 Randomized DMD

As stated in [Musco and Musco 2015], the Block Krylov Method is based on the fact that for

finding low-rank approximations of a matrix 𝐴:

"There are better polynomials than 𝐴𝑞 for denoising tail singular values."

The Randomized Block Krylov Method stores all the Krylov subspaces along the power itera-

tion and find the low rank approximation from this larger space. We use this method to efficiently

compute a low-rank basis for the time series data and perform DMD on the low-rank projection.

Algorithm 2 Randomized DMD

input: (𝑛×𝑚) data matrices𝑋𝐿, 𝑋𝑅 ; target rank of DMD 𝑟 , target rank 𝑙 = 𝑟 +𝑝 for randomized

low-rank approximation and target error 𝜖 .

output: projected dynamic modes Φ of the data and the corresponding eigenvalues 𝐸

1. Generate a random matrix Π ∈ R(𝑚+1)×𝑙 with i.i.d. standard Gaussian entries.

2. Let 𝑞 = 𝑂 (log(𝑚)√
𝜖

), define

𝑋 =


𝑥0 𝑥1 . . . 𝑥𝑚


Compute

𝐾 =

[
𝑋Π (𝑋𝑋 ∗)𝑋Π (𝑋𝑋 ∗)2𝑋Π . . . (𝑋𝑋 ∗)𝑞𝑋Π

]
(Note: For implementations, in order to have better numerical stability, perform QR every

few steps along the power iteration.)

Let [𝑄, 𝑅] = qr(𝐾)

9

3. Let 𝑌𝐿 = 𝑄∗𝑋𝐿, 𝑌𝑅 = 𝑄∗𝑋𝑅

4. Let 𝐴𝑌 = 𝑌𝑅𝑌
†
𝐿
. Compute reduced rank-r SVD of 𝑌𝐿 ≈ 𝑈 Σ𝑉 ∗, then compute the projected

𝐴𝑌 = 𝑈 ∗𝑌𝑅𝑉 Σ−1, compute the eigenvalue and eigenvectors of 𝐴𝑌 : 𝐴𝑌𝑊𝑌 =𝑊𝑌𝐸

5. Finally, reconstruct the top 𝑟 high-dimensional DMD modes by Φ = 𝑄𝑊𝑌 , and return the

eigenvalues 𝐸.

The difference between Algorithm 2 and Algorithm 1 is that the above algorithm uses 𝑄 from

randomized low-rank approximation instead of the left singular vectors 𝑈 to project the matrix

𝐴.

𝐴𝑌 = 𝑌𝑅𝑌
†
𝐿

= (𝑄∗𝑋𝑅) (𝑄∗𝑋𝐿)†

= 𝑄∗𝑋𝑅𝑋
†
𝐿
(𝑄∗)†

= 𝑄∗𝑋𝑅𝑋
†
𝐿
𝑄

= 𝑄∗𝐴𝑄

Reconstruction of the data from DMD modes follows the same procedure as the standard DMD.

3.3 Numerical Experiments

We compare our Algorithm 2, Block Krylov DMD (bkDMD), the algorithm proposed in

[Erichson et al. 2019], Randomized DMD (rDMD) and deterministic DMD by testing on the data

sets used in the original paper.

In the numerical experiments below, we compare the three methods by plotting the DMD

eigenvalues. We also added some Gaussian noise to the data to see if our method is robust to

10

noise. For snapshot data ∈ R𝑛 , we first computed the average 2-norm of the data and call it 𝜆.

Then if we want to add 𝛼% noise, we draw a standard Gaussian in R𝑛 and multiply it by 𝛼%𝜆√
𝑛

3.3.1 Fluid Flow Behind a Cylinder

We used the simulation data provided by the above paper, which is the numerical simulation

of vorticity of fluid flow behind a cylinder at Reynolds number 𝑅𝑒 = 100. The concatenated

snapshot data has dimension 𝑛 = 89351, and time steps𝑚 = 151.

We first test these methods on the original data and then add 20% Gaussian noise. We plot

below 3.1 the singular values of the original data and the one with noise.

Figure 3.1: Singular values of the data

We observe that the original data has exponentially decaying singular values. Therefore, we

should expect both bkDMD and rDMD to be performing extremely well. In fact, with only 1

power iteration and setting the damping parameter 𝑝 = 3, both methods are able to capture the

top 15 dynamic modes accurately. The rDMD had a 10 fold speed increase and the bkDMD had a

5 fold speed increase.

11

In order to see the benefit of bkDMD over rDMD, we added 20 percent noise to each snapshot

of our data. In that case, the singular values are not exponentially decaying and keeping the

entire Krylov subspace gives much better approximation. We tried to extract the top 15 modes

with damping parameter 𝑝 = 3. For rDMD, we used 10 power iterations and for bkDMD, we used

3. Both methods used about half of the time required by deterministic DMD. The result from the

bkDMD is significantly better than rDMD.

Please see the eigenvalue plots of our two tests belows:

Figure 3.2: DMD eigenvalues of fluid data

3.3.2 Sea Surface Temperature Data

We also tested ourmethod on amuch larger data set, provided by National Oceanic and Atmo-

spheric Administration (NOAA). The data set consists of daily sea surface temperature measured

on a 1/4 ° global grid. We used the data from 1981 to 2022 and compared the three methods. The

concatenated snapshot data has dimension 𝑛 = 691150, and time steps 𝑚 = 15097. Computing

deterministic DMD on the original data was beyond our computational capacity, therefore we

compute the weekly average first and test our methods on the shorter time series, with number

12

https://psl.noaa.gov/
https://psl.noaa.gov/

of time steps𝑚 = 2156. Our data is downloaded from:

https://downloads.psl.noaa.gov/Datasets/noaa.oisst.v2.highres/

We measure the performance of our method by the same relative error defined by [Erichson

et al. 2019]:

𝜌 (𝑋 ′, �𝑋𝐷𝑀𝐷) = | |𝑋 ′ − �𝑋𝐷𝑀𝐷 | |𝐹
| | �𝑋𝐷𝑀𝐷 | |𝐹

where �𝑋𝐷𝑀𝐷 is the data reconstructed from deterministic DMD and 𝑋 ′ is the data recon-

structed from the randomized method.

For the numerical experiments, we used a target rank 𝑘 = 20, damping parameter 𝑝 = 5 and

𝑞 = 3 power iterations for both rDMD and bkDMD. Both methods had around 4 to 5 fold speed

increase compared to deterministic DMD, with very small relative errors. The relative error for

rDMD was about 8 times larger than the relative error for bkDMD.

We could also compare the two methods by looking at the eigenvalue plot 3.3:

13

Figure 3.3: DMD eigenvalues of SST data

14

4 | DMD for Streaming Data

4.1 Motivation

In many applications of the DMD, the time series data to be analyzed come from streaming

data. These time series could be, for example, user input from a website, ocean temperature

over time, · · · , etc. Updating the standard DMD algorithm is extremely expensive, since we need

to compute the singular value decomposition of the entire dataset every time when we add an

additional snapshot data. Zhang et al. proposed an efficient method to update the DMD for

additional data based on the assumption that the data has full rank[Zhang et al. 2019]. They also

developed an update approach in which weight for different time steps are incorporated so that

DMD could be applied to systems that varies significantly in time.

4.2 DMD with single update

We propose another update approach without the full row rank assumption. The novelty of

our method is that we take full advantage of the intrinsic low rank structure of the data. This

method could be easily combined with the randomized DMD.

Given the data matrices 𝑋𝐿, 𝑋𝑅 and 𝑝, 𝑞, 𝑟 , we first compute randomzied DMD (rDMD or

bkDMD) following algorithm 2 and keep the orthogonal matrix 𝑄 as output for further usage.

In practice, to have better performance, we can also initialize with deterministic DMD, i.e. use

15

the top 𝑙 = 𝑝 + 𝑟 left eigenvectors of 𝑋𝐿 as our orthogonal matrix 𝑄 .

We introduce a new parameter 𝛿 , the update threshold and form the new data matrices as:

𝑋𝐿 =


𝑥0 𝑥1 . . . 𝑥𝑚



𝑋𝑅 =


𝑥1 𝑥2 . . . 𝑥𝑚+1


If the new snapshot data still lies in the column space of 𝑄 with relative error 𝛿 , i.e.:

| |𝑥𝑚+1 −𝑄𝑄∗𝑥𝑚+1 | |2
| |𝑥𝑚+1 | |2

≤ 𝛿

we keep 𝑄 unchanged.

Then, we redefine 𝑌𝐿 and 𝑌𝑅 as:

𝑌𝐿 = 𝑄
∗𝑋𝐿

= 𝑄∗
[
𝑋𝐿 𝑥𝑚

]
=

[
𝑄∗𝑋𝐿 𝑄∗𝑥𝑚

]
=

[
𝑌𝐿 𝑄∗𝑥𝑚

]

𝑌𝑅 =

[
𝑌𝑅 𝑄∗𝑥𝑚+1

]

16

𝐴𝑌 = 𝑌𝑅𝑌
†
𝐿

= 𝑌𝑅𝑌
∗
𝐿 (𝑌𝐿𝑌 ∗

𝐿)†

= (
𝑚+1∑︁
𝑘=1

𝑦𝑘𝑦
∗
𝑘−1) (

𝑚∑︁
𝑘=0

𝑦𝑘𝑦
∗
𝑘
)†

= (𝑌𝑅𝑌 ∗
𝐿 + 𝑦𝑚+1𝑦

∗
𝑚) (𝑌𝐿𝑌 ∗

𝐿 + 𝑦𝑚𝑦∗𝑚)†

where in the 2nd line we used the identity 𝐴† = 𝐴∗𝐴†∗𝐴† = 𝐴∗𝐴∗†𝐴† = 𝐴∗(𝐴𝐴∗)†

If 𝑥𝑚 ∈ col(𝑋𝐿), we can further simplify our expression as:

𝐴𝑌 = (𝑌𝑅𝑌 ∗
𝐿 + 𝑦𝑚+1𝑦

∗
𝑚) [(𝑌𝐿𝑌 ∗

𝐿)† +𝐺]

= 𝐴𝑌 + 𝑌𝑅𝑌 ∗
𝐿𝐺 + 𝑦𝑚+1𝑦

∗
𝑚 (𝑌𝐿𝑌 ∗

𝐿)† + 𝑦𝑚+1𝑦
∗
𝑚𝐺

where 𝐺 = −(𝑌𝐿𝑌 ∗
𝐿
)†𝑦𝑚𝑦∗𝑚

(𝑌𝐿𝑌 ∗
𝐿
)†

[1+𝑦∗𝑚 (𝑌𝐿𝑌 ∗
𝐿
)†𝑦𝑚] . This result comes from a direct application of the sem-

inal work of Cline[Cline 1965]:

Therorem 1. For any matrices, 𝑈 and 𝑉 , the generalized inverse of the sum 𝑈𝑈 ∗ +𝑉𝑉 ∗ can

be written in the form:

(𝑈𝑈 ∗ +𝑉𝑉 ∗)† = (𝐼 −𝐶†∗𝑉 ∗)𝑈 †∗ [𝐼 −𝑈 †𝑉 (𝐼 −𝐶†𝐶)𝐾𝑉 ∗𝑈 †∗]𝑈 †(𝐼 −𝑉𝐶†) +𝐶†∗𝐶†

where

𝐶 = (𝐼 −𝑈𝑈 †)𝑉

and

𝐾 = [𝐼 + (𝐼 −𝐶†𝐶)𝑉 ∗𝑈 †∗𝑈 †𝑉 (𝐼 −𝐶†𝐶)]−1

The assumption that 𝑥𝑚 ∈ col(𝑋𝐿), or losely speaking: | |𝑥𝑚 −𝑄𝑄∗𝑥𝑚 | |2 is small is checked at

17

the beginning of the previous iteration of the algorithm, when we decide whether an update of𝑄

is necessary. If the assumption doesn’t hold, we will need to compute (𝑌𝐿𝑌 ∗
𝐿
+𝑦𝑚𝑦∗𝑚)† using SVD.

Since we are using this update method for the randomized DMD discussed in last section, we

are assuming the spatial (𝑛) and temporal (𝑚) dimensions of the data to be much larger than the

target rank (𝑙). Computing the pseudoinverse of 𝑌𝐿𝑌 ∗
𝐿
+ 𝑦𝑚𝑦∗𝑚 is very cheap as this matrix has

dimension 𝑙 × 𝑙 .

When the change of 𝑄 is necessary, we update 𝑄 by:

𝑄 =

[
𝑄 𝑞𝑙+1

]
where

𝑞𝑙+1 =
𝑥𝑚+1 −𝑄𝑄∗𝑥𝑚+1

| |𝑥𝑚+1 −𝑄𝑄∗𝑥𝑚+1 | |2

Let’s denote 𝑌𝐿 = 𝑞∗𝑙+1𝑋𝐿, 𝑌𝑅 = 𝑞∗
𝑙+1𝑋𝑅, 𝑦𝑚 = 𝑞∗

𝑙+1𝑥𝑚, 𝑦𝑚+1 = 𝑞∗𝑙+1𝑥𝑚+1 ,then

𝑌𝐿 =


𝑄∗

𝑞∗
𝑙+1


[
𝑋𝐿 𝑥𝑚

]

=


𝑌𝐿 𝑦𝑚

𝑌𝐿 𝑦𝑚



𝑌𝑅 =


𝑄∗

𝑞∗
𝑙+1


[
𝑋𝑅 𝑥𝑚+1

]

=


𝑌𝑅 𝑦𝑚+1

𝑌𝑅 𝑦𝑚+1


18

We also keep track of 𝑌𝑅𝑌 ∗
𝐿
and 𝑌𝐿𝑌 ∗

𝐿
for the use of future iteration:

𝑌𝑅𝑌
∗
𝐿 =


𝑌𝑅 𝑦𝑚+1

𝑌𝑅 𝑦𝑚+1



𝑌 ∗
𝐿

𝑌 ∗
𝐿

𝑦∗𝑚 𝑦∗𝑚


=


𝑌𝑅𝑌

∗
𝐿
+ 𝑦𝑚+1𝑦∗𝑚 𝑌𝑅𝑌

∗
𝐿
+ 𝑦𝑚+1𝑦∗𝑚

𝑌𝑅𝑌
∗
𝐿
+ 𝑦𝑚+1𝑦∗𝑚 𝑌𝑅𝑌𝐿

∗ + 𝑦𝑚+1𝑦∗𝑚


and

𝑌𝐿𝑌
∗
𝐿 =


𝑌𝐿 𝑦𝑚

𝑌𝐿 𝑦𝑚



𝑌 ∗
𝐿

𝑌 ∗
𝐿

𝑦∗𝑚 𝑦∗𝑚


=


𝑌𝐿𝑌

∗
𝐿
+ 𝑦𝑚𝑦∗𝑚 𝑌𝐿𝑌

∗
𝐿
+ 𝑦𝑚𝑦∗𝑚

𝑌𝐿𝑌
∗
𝐿
+ 𝑦𝑚𝑦∗𝑚 𝑌𝐿𝑌

∗
𝐿
+ 𝑦𝑚𝑦∗𝑚


Then the new 𝐴𝑌 = 𝑌𝑅𝑌

†
𝐿

= 𝑌𝑅𝑌
∗
𝐿
(𝑌𝐿𝑌 ∗

𝐿
)†. Notice that we should use the second expres-

sion, i.e., compute the pseudo-inverse of 𝑌𝐿𝑌 ∗
𝐿
since this matrix has dimension 𝑙 × 𝑙 , while 𝑌𝐿 has

dimension 𝑙 ×𝑚.

4.3 DMD with block update

This method could also be easily adapted when we want to update the DMD every few steps,

instead of updating it for every new snapshot data.

Suppose we want to update the DMD with additional 𝑠 snapshot data 𝑥𝑚+1, 𝑥𝑚+2, · · · , 𝑥𝑚+𝑠 .

We need to check if we need to update 𝑄 first: compute | |𝑥𝑖 − 𝑄𝑄∗𝑥𝑖 | |2 for all the new data

one by one and update 𝑄 accordingly.

19

If we don’t need to update Q:

𝑌𝐿 =

[
𝑌𝐿 𝑦𝑚 𝑦𝑚+1 · · · 𝑦𝑚+𝑠−1

]

𝑌𝑅 =

[
𝑌𝑅 𝑦𝑚+1 𝑦𝑚+2 · · ·𝑦𝑚+𝑠

]

𝐴𝑌 = 𝑌𝑅𝑌
†
𝐿

= 𝑌𝑅𝑌
∗
𝐿 (𝑌𝐿𝑌 ∗

𝐿)†

= (𝑌𝑅𝑌 ∗
𝐿 +

𝑠∑︁
𝑖=1

𝑦𝑚+𝑖𝑦
∗
𝑚+𝑖−1) (𝑌𝐿𝑌 ∗

𝐿 +
𝑠∑︁
𝑖=1

𝑦𝑚+𝑖−1𝑦
∗
𝑚+𝑖−1)†

If we need to add 𝑡 new dimensions, 𝑞𝑙+1, · · · , 𝑞𝑙+𝑡 :

Following the same notation, we define

𝑌𝐿 =



𝑞∗
𝑙+1𝑋𝐿

𝑞∗
𝑙+2𝑋𝐿

· · ·

𝑞∗
𝑙+𝑡𝑋𝐿


, 𝑌𝑅 =



𝑞∗
𝑙+1𝑋𝑅

𝑞∗
𝑙+2𝑋𝑅

· · ·

𝑞∗
𝑙+𝑡𝑋𝑅


, 𝑦𝑚 =



𝑞∗
𝑙+1𝑥𝑚

𝑞∗
𝑙+2𝑥𝑚

· · ·

𝑞∗
𝑙+𝑡𝑥𝑚


, 𝑦𝑚+1 =



𝑞∗
𝑙+1𝑥𝑚+1

𝑞∗
𝑙+2𝑥𝑚+1

· · ·

𝑞∗
𝑙+𝑡𝑥𝑚+1


then the computation is the same:

𝑌𝑅𝑌
∗
𝐿 =


𝑌𝑅𝑌

∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖 𝑦
∗
𝑚+𝑖−1 𝑌𝑅𝑌

∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖 𝑦
∗
𝑚+𝑖−1

𝑌𝑅𝑌
∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖 𝑦
∗
𝑚+𝑖−1 𝑌𝑅𝑌𝐿

∗ +∑𝑠
𝑖=1𝑦𝑚+𝑖 𝑦

∗
𝑚+𝑖−1


𝑌𝐿𝑌

∗
𝐿 =


𝑌𝐿𝑌

∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖−1𝑦
∗
𝑚+𝑖−1 𝑌𝐿𝑌

∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖−1𝑦
∗
𝑚+𝑖−1

𝑌𝐿𝑌
∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖−1𝑦
∗
𝑚+𝑖−1 𝑌𝐿𝑌

∗
𝐿
+∑𝑠

𝑖=1𝑦𝑚+𝑖−1𝑦
∗
𝑚+𝑖−1


20

4.4 Numerical Experiments

4.4.1 DMD with single update

We test our update method on the fluid data in section 3.3.1. We try to capture the top 15

dynamic modes with damping parameter 𝑝 = 5. We separate out the last 30 snapshot data and

add them as new data one by one. We then plot the DMD eigenvalues at time 0, 10, 20, 30 for the

following four methods: deterministic DMD each step, update each step by the method discussed

above, rDMD each step, bkDMD each step. For the update method, we initialize with determin-

istic DMD. For rDMD, we used 𝑞 = 5 power iterations and for bkDMD 𝑞 = 2 power iterations. As

we can see from 4.1 , all of the methods are able to capture the DMDmode accurately. The update

method had an over 30-fold speed increase compared to computing deterministic DMD for each

step. Both rDMD and bkDMD consumed around 60 percent of the time used by deterministic

DMD and the update method had over 20-fold speed increase compared to rDMD and bkDMD.

When 20% Gaussian noise was added to each snapshot data, our update method had around

10-fold speed increase compared to deterministic DMD. We observe in the last time step, our

update method was able to capture the DMD modes correctly while bkDMD lost 2 modes and

rDMD lost 4. Please see 4.2 for details.

4.4.2 DMD with block update

We perform the same experiment with the same parameters as in the single update case. In

order to test our block update method, we separate out the last 60 snapshot data and add them as

new block data in 3 steps, each step adding 20 timesteps. Again, all methods were able to capture

the DMD modes correctly. Our update method had an over 4-fold speed increase compared to

the deterministic DMD.When adding 20% Gaussian noise, we observe similar results. Our update

method was able to capture the DMD modes more accurately. See 4.3 and 4.4.

21

Figure 4.1: DMD eigenvalues of single update without noise

22

Figure 4.2: DMD eigenvalues of single update with noise

23

Figure 4.3: DMD eigenvalues of blcok update without noise

24

Figure 4.4: DMD eigenvalues of block update with noise

25

A | Appendix

A.1 Python Code

impor t numpy as np

c t = lambda x : x . T . c on j uga t e ()

qr = lambda x : np . l i n a l g . qr (x) [0]

d e f rDMD (X , p , q , k) :

XL = X [: , : − 1]

XR = X [: , 1 :]

l = k + p

n ,m = X . shape

omega = np . random . normal (s i z e = (m−1 , l))

Y = XL@omega

f o r i i n range (q) :

Q = qr (Y)

Q = qr (c t (XL)@Q)

Y = XL@Q

Q = qr (Y)

Y = c t (Q)@X

YL = Y [: , : − 1] ; YR = Y [: , 1 :]

u , s , vh = np . l i n a l g . svd (YL , f u l l _m a t r i c e s = F a l s e)

u = u [: , : k] ; vh = vh [: k , :] ; s = s [: k]

26

AY = c t (u)@YR@ct (vh)@np . d i ag (1 / s)

YRYL = YR@ct (YL) ; YLYL = YL@ct (YL)

ym = YR [: , − 1 :]

r e t u r n AY , YRYL , YLYL , Q , X , Y

de f bkDMD (X , p , q , k) :

XL = X [: , : − 1]

XR = X [: , 1 :]

l = k + p

n ,m = X . shape

omega = np . random . normal (s i z e = (m−1 , l))

K = np . z e r o s ((n , l ∗ (q + 1)))

K [: , : l] = qr (XL@omega)

f o r i i n range (q) :

l a s t _K = K [: , i ∗ l : (i + 1) ∗ l]

new_K = qr (c t (XL) @last_K)

new_K = qr (XL@new_K)

K [: , (i + 1) ∗ l : (i + 2) ∗ l] = new_K

Q = qr (K)

Y = c t (Q)@X

YL = Y [: , : − 1] ; YR = Y [: , 1 :]

u , s , vh = np . l i n a l g . svd (YL , f u l l _m a t r i c e s = F a l s e)

u = u [: , : k] ; vh = vh [: k , :] ; s = s [: k]

AY = c t (u)@YR@ct (vh)@np . d i ag (1 / s)

YRYL = YR@ct (YL) ; YLYL = YL@ct (YL)

ym = YR [: , − 1 :]

r e t u r n AY , YRYL , YLYL , Q , X , Y

de f DMD_update (YRYL , YLYL , Q , X , Y , k , new_x , d e l t a = 0 . 0 1) :

t h i s f u n c t i o n upda t e s the DMD modes

when a d d i t i o n a l snapsho t da t a becomes a v a i l a b l e .

27

i npu t : YRYL , YLYL ,Q , X , Y from p r ev i ou s i t e r a t i o n

k : the t a r g e t rank o f the DMD

new_x : the new snapsho t da t a o f shape n x s

(we a r e a l l ow ing the number o f new snap sho t s to be more than one)

d e l t a : the update t h r e s h o l d

ou tpu t : AY , YRYL , YLYL , Q , X , Y

l = YLYL . shape [0] ; n = X . shape [0] ; s = new_x . shape [1]

a s s e r t (new_x . shape [0] == n)

ym = Y [: , − 1 :]

f o r i i n range (s) : # check the new snapsho t da t a one by one

new_data = new_x [: , i : i +1]

q = new_data − Q@(c t (Q) @new_data) ; q_norm = np . l i n a l g . norm (q)

r e l _ e r r = q_norm / np . l i n a l g . norm (new_data)

i f r e l _ e r r <= d e l t a : pa s s

e l s e : Q = np . b l o ck ([Q , q / q_norm])

Q_old , Q_new = Q [: , : l] ,Q [: , l :]

new_y = c t (Q_old)@new_x

o ld_y = np . b l o ck ([Y [: , − 1 :] , new_y [: , : − 1]])

YRYL_new = YRYL + new_y@ct (o ld_y) ; YLYL_new = YLYL + old_y@ct (o ld_y)

Y_new = np . b l o ck ([Y , new_y])

i f Q . shape [1] > l : # Q i s updated

p r i n t (’Q i s updated , we added ’+ s t r (Q . shape [1] − l) + ’ new dimens ions ’)

Y _ t i l d e = c t (Q_new)@X

YL_ t i l d e , YR_ t i l d e = Y _ t i l d e [: , : − 1] , Y _ t i l d e [: , 1 :]

new_y_ t i l d e = c t (Q_new)@new_x

o l d _ y _ t i l d e = np . b l o ck ([Y _ t i l d e [: , − 1 :] , n ew_y_ t i l d e [: , : − 1]])

YL = Y [: , : − 1] ; YR = Y [: , 1 :]

YRYL_new =

np . b l o ck ([[YRYL_new , YR@ct (Y L _ t i l d e)+ new_y@ct (o l d _ y _ t i l d e)] ,

[YR_ t i l de@ct (YL)+ new_y_t i lde@ct (o ld_y) ,

YR_ t i l de@ct (Y L _ t i l d e)+ new_y_t i lde@ct (o l d _ y _ t i l d e)]])

28

YLYL_new =

np . b l o ck ([[YLYL_new , YL@ct (Y L _ t i l d e)+ old_y@ct (o l d _ y _ t i l d e)] ,

[YL_ t i l d e@c t (YL)+ o l d _y _ t i l d e@c t (o ld_y) ,

YL_ t i l d e@c t (Y L _ t i l d e)+ o l d _ y_ t i l d e@c t (o l d _ y _ t i l d e)]])

Y_new = np . b l o ck ([[Y , new_y] , [Y _ t i l d e , new_y_ t i l d e]])

u , s , vh = np . l i n a l g . svd (YLYL_new , f u l l _m a t r i c e s = Fa l s e , h e rm i t i a n =True)

u = u [: , : k] ; vh = vh [: k , :] ; s = s [: k]

AY = c t (u)@YRYL_new@ct (vh)@np . d i ag (1 / s)

r e t u r n AY , YRYL_new , YLYL_new , Q , np . b l o ck ([X , new_x]) , Y_new

29

Bibliography

Berkooz, G., Holmes, P., and Lumley, J. L. (1993). The proper orthogonal decomposition in the analysis of turbulent

flows. Annual Review of Fluid Mechanics, 25(1):539–575.

Cline, R. E. (1965). Representations for the generalized inverse of sums of matrices. Journal of the Society for Industrial

and Applied Mathematics, Series B: Numerical Analysis, 2(1):99–114.

Erichson, N. B., Mathelin, L., Kutz, J. N., and Brunton, S. L. (2019). Randomized dynamic mode decomposition. SIAM

Journal on Applied Dynamical Systems, 18(4):1867–1891.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with randomness: Probabilistic algorithms

for constructing approximate matrix decompositions. SIAM review, 53(2):217–288.

Koopman, B. O. (1931). Hamiltonian systems and transformation in hilbert space. Proceedings of the National Academy

of Sciences, 17(5):315–318.

Kutz, J. N., Fu, X., and Brunton, S. L. (2016). Multiresolution dynamic mode decomposition. SIAM Journal on Applied

Dynamical Systems, 15(2):713–735.

Musco, C. and Musco, C. (2015). Randomized block krylov methods for stronger and faster approximate singular

value decomposition. Advances in neural information processing systems, 28.

Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P., and Henningson, D. S. (2009). Spectral analysis of nonlinear flows.

Journal of fluid mechanics, 641:115–127.

Schimid, P. J. (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics,

656:5–28.

30

Tu, J. H., , Rowley, C.W., Luchtenburg, D.M., Brunton, S. L., and and, J. N. K. (2014). On dynamicmode decomposition:

Theory and applications. Journal of Computational Dynamics, 1(2):391–421.

Williams, M. O., Hemati, M. S., Dawson, S. T., Kevrekidis, I. G., and Rowley, C. W. (2016). Extending data-driven

koopman analysis to actuated systems. IFAC-PapersOnLine, 49(18):704–709.

Zhang, H., Rowley, C. W., Deem, E. A., and Cattafesta, L. N. (2019). Online dynamic mode decomposition for time-

varying systems. SIAM Journal on Applied Dynamical Systems, 18(3):1586–1609.

31

	Introduction
	Background
	Dynamical System and Data
	Standard DMD

	Randomized DMD for High Dimensional Data
	Motivation
	Randomized DMD
	Numerical Experiments
	Fluid Flow Behind a Cylinder
	Sea Surface Temperature Data

	DMD for Streaming Data
	Motivation
	DMD with single update
	DMD with block update
	Numerical Experiments
	DMD with single update
	DMD with block update

	Appendix
	Python Code

	Bibliography

